Pathways to the Oxidation of Copper

Paul Fuoss, Jeff Eastman, Dillon Fong, Guangwen Zhou, Lynn Rehn, Pete Baldo and Loren Thompson Materials Science Division, Argonne National Laboratory

Motivation and Accomplishments

Understanding oxidation leads to a better control of:

- Corrosion
- Heterogeneous catalysis
- · Growth of oxide layers for devices
- Performance of nanoscale materials

Our studies of Cu(001) oxidation:

- Find c(2x2) structure over a wide of (pO₂, T)
- . Explain conflicting results in the literature
- Demonstrate that latency is connected with saturation of this reconstruction

Background Information

- Initial formation of oxide is through islands
- Oxygen induces a reconstruction of the Cu (001) surface, usually $2\sqrt{2} \times \sqrt{2} R45^{\circ}$
- · Theory predicts sub-surface oxygen plays an important role
- Impurities create problems but can be minimized by thin film growth
- We produce epitaxial films on SrTiO₃ substrates by ex-situ evaporation under **UHV** conditions
- Oxide formation is studied using in situ x-ray scattering under quasiequilibrium conditions

Future Directions

- Alloying causes more complex oxidation behavior (e.g. oxidation of Cu-Ni alloys is very different than that of pure Cu)
- Studies are also being extended to oxide-supported metal and alloy islands (relevant to redox catalysis)
- X-ray scattering studies will be complemented by theory and in situ TEM, ESEM, and spectroscopy

Oxidation and Reduction are Reversible

Cu2O can be fully reduced by lower PO2 (below). The c(2x2) reconstruction (right) persists until Cu2O is gone (oxide phase supplies O2)

Surface Phase Diagram

- Found an ordered surface structure with c(2x2) symmetry
- c(2x2) is stable over a wide range of T and po, (resolved literature controversy).
- Does surface structure modify oxidation behavior?

Materials Processing System

- · Precisely controlled atmosphere (Ar, O2, CO, CO2, H2) with base pressure <10-7 Torr
- Temperatures between RT and
- Two stage residual gas analysis
- Mounts on standard diffractometer

Cu (002) Cu₂O (002) Reconstruction Cu₂O (200) Cu (200) While varying Po, monitor: - Adsorption (CTRs)

- Cu strain state (*)
- Surface reconstructions (*)
- Cu2O nucleation & growth ()
- Cu-Cu₂O phase equilibria (intensity of increase or decrease?)

